GSO ASTM E213:2024

ASTM E213:22
Gulf Standard   Current Edition · Approved on 14 October 2024

Standard Practice for Ultrasonic Testing of Metal Pipe and Tubing

GSO ASTM E213:2024 Files

GSO ASTM E213:2024 Scope

1.1 This practice2 covers a procedure for detecting discontinuities in metal pipe and tubing during a volumetric examination using ultrasonic methods. Specific techniques of the ultrasonic method to which this practice applies include pulse-reflection techniques, both contact and non-contact (for example, as described in Guide E1774 and Practice E1816), and angle beam immersion techniques, both conventional and phased array. Artificial reflectors consisting of longitudinal, and, when specified by the using party or parties, transverse reference notches placed on the surfaces of a reference standard are employed as the primary means of standardizing the ultrasonic system.

1.2 This practice is intended for use with tubular products having outside diameters approximately 1/2 in. (12.7 mm) and larger, provided that the examination parameters comply with and satisfy the requirements of Section 11. These procedures have been successful with smaller sizes. These may be specified upon contractual agreement between the using parties. These procedures are intended to ensure that proper beam angles and beam shapes are used to provide full volume coverage of pipes and tubes, including those with low ratios of outside diameter-to-wall thickness, and to avoid spurious signal responses when examining small-diameter, thin-wall tubes.

1.3 The procedure in Annex A1 is applicable to pipe and tubing used in nuclear and other special and safety applications. The procedure in Annex A2 may be used to determine the helical scan pitch.

1.4 This practice does not establish acceptance criteria; they must be specified by the using party or parties.

1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Best Sellers From Mechanical Sector

GSO 42:2015
 
Gulf Technical Regulation
MOTOR VEHICLES - GENERAL REQUIREMENTS
GSO 159:1993
 
Gulf Technical Regulation
MOTOR VEHICLES – DIMENSIONS AND WEIGHTS
GSO 98:1988
 
Gulf Technical Regulation
MOTOR VEHICLES- FLAMMABILITY OF INTERIOR MATERIALS AND THEIR TESTING METHODS
GSO 1780:2010
 
Gulf Technical Regulation
Motor vehicle-vehicle identification number (vin) - requirements

Recently Published from Mechanical Sector

GSO EN 13445-6:2024
EN 13445-6:2021 
Gulf Standard
Unfired pressure vessels - Part 6: Requirements for the design and fabrication of pressure vessels and pressure parts constructed from spheroidal graphite cast iron
GSO ISO 11154:2024
ISO 11154:2023 
Gulf Standard
Road vehicles — Roof load carriers
GSO ISO 10468:2024
ISO 10468:2023 
Gulf Standard
Glass-reinforced thermosetting plastics (GRP) pipes — Determination of the ring creep properties under wet or dry conditions
GSO ISO 10300-1:2024
ISO 10300-1:2023 
Gulf Standard
Calculation of load capacity of bevel gears — Part 1: Introduction and general influence factors