GSO IEC TS 61400-3-2:2024
IEC TS 61400-3-2:2019
Gulf Standard
Current Edition
·
Approved on
31 January 2024
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines
GSO IEC TS 61400-3-2:2024 Files
English
51 Pages
Current Edition
Reference Language
Obtaining this standard through the store is currently unavailable. You can acquire it directly from its source.
GSO IEC TS 61400-3-2:2024 Scope
IEC TS 61400-3-2:2019 specifies additional requirements for assessment of the external conditions at a floating offshore wind turbine (FOWT) site and specifies essential design requirements to ensure the engineering integrity of FOWTs. Its purpose is to provide an appropriate level of protection against damage from all hazards during the planned lifetime.
This document focuses on the engineering integrity of the structural components of a FOWT but is also concerned with subsystems such as control and protection mechanisms, internal electrical systems and mechanical systems.
A wind turbine is considered as a FOWT if the floating substructure is subject to hydrodynamic loading and supported by buoyancy and a station-keeping system. A FOWT encompasses five principal subsystems: the RNA, the tower, the floating substructure, the station-keeping system and the on-board machinery, equipment and systems that are not part of the RNA.
The following types of floating substructures are explicitly considered within the context of this document:
a) ship-shaped structures and barges,
b) semi-submersibles (Semi),
c) spar buoys (Spar),
d) tension-leg platforms/buoys (TLP / TLB).
In addition to the structural types listed above, this document generally covers other floating platforms intended to support wind turbines. These other structures can have a great range of variability in geometry and structural forms and, therefore, can be only partly covered by the requirements of this document. In other cases, specific requirements stated in this document can be found not to apply to all or part of a structure under design. In all the above cases, conformity with this document will require that the design is based upon its underpinning principles and achieves a level of safety equivalent, or superior, to the level implicit in it.
This document is applicable to unmanned floating structures with one single horizontal axis turbine. Additional considerations might be needed for multi-turbine units on a single floating substructure, vertical-axis wind turbines, or combined wind/wave energy systems.
This document is to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. In particular, this document is intended to be fully consistent with the requirements of IEC 61400-1 and IEC 61400-3-1. The safety level of the FOWT designed according to this document is to be at or exceed the level inherent in IEC 61400‑1 and IEC 61400-3-1.
This document focuses on the engineering integrity of the structural components of a FOWT but is also concerned with subsystems such as control and protection mechanisms, internal electrical systems and mechanical systems.
A wind turbine is considered as a FOWT if the floating substructure is subject to hydrodynamic loading and supported by buoyancy and a station-keeping system. A FOWT encompasses five principal subsystems: the RNA, the tower, the floating substructure, the station-keeping system and the on-board machinery, equipment and systems that are not part of the RNA.
The following types of floating substructures are explicitly considered within the context of this document:
a) ship-shaped structures and barges,
b) semi-submersibles (Semi),
c) spar buoys (Spar),
d) tension-leg platforms/buoys (TLP / TLB).
In addition to the structural types listed above, this document generally covers other floating platforms intended to support wind turbines. These other structures can have a great range of variability in geometry and structural forms and, therefore, can be only partly covered by the requirements of this document. In other cases, specific requirements stated in this document can be found not to apply to all or part of a structure under design. In all the above cases, conformity with this document will require that the design is based upon its underpinning principles and achieves a level of safety equivalent, or superior, to the level implicit in it.
This document is applicable to unmanned floating structures with one single horizontal axis turbine. Additional considerations might be needed for multi-turbine units on a single floating substructure, vertical-axis wind turbines, or combined wind/wave energy systems.
This document is to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. In particular, this document is intended to be fully consistent with the requirements of IEC 61400-1 and IEC 61400-3-1. The safety level of the FOWT designed according to this document is to be at or exceed the level inherent in IEC 61400‑1 and IEC 61400-3-1.
Best Sellers From Electrical Sector
YSMO GSO 2530:2023
GSO 2530:2016
Yemeni Technical Regulation
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners


GSO 2530:2016
Gulf Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners

GSO 34:2007
Gulf Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR
MOTOR VEHICLES AND INTERNAL
COMBUSTION ENGINES

GSO 35:2007
Gulf Standard
Methods of test
for lead-acid starter batteries used for motor vehicles
and internal combustion engines

Recently Published from Electrical Sector
GSO IEC 60071-2:2024
IEC 60071-2:2023
Gulf Standard
Insulation co-ordination - Part 2: Application guidelines


GSO IEC 62146-2:2024
IEC 62146-2:2023
Gulf Standard
Capacitors for high‑voltage alternating current circuit‑breakers - Part 2: TRV capacitors


GSO IEC 60115-8:2024
IEC 60115-8:2023
Gulf Standard
Fixed resistors for use in electronic equipment - Part 8: Sectional specification: Fixed surface mount resistors


GSO IEC TS 62893-4-2:2024
IEC TS 62893-4-2:2021
Gulf Standard
Charging cables for electric vehicles of rated voltages up to and including 0,6/1 kV - Part 4-2: Cables for DC charging according to mode 4 of IEC 61851-1 - Cables intended to be used with a thermal management system

